首页> 外文OA文献 >Seismic reflection imaging of near surface structures using the Common Reflection Surface (CRS) Stack Methodud
【2h】

Seismic reflection imaging of near surface structures using the Common Reflection Surface (CRS) Stack Methodud

机译:使用共同反射面(CRs)的近地表结构的地震反射成像

摘要

This PhD thesis aims to evaluate whether the udCommon-Refludection-Surface (CRS) stack method can be considered as a more cost efficient processing alternative to the conventionally used Common Midpoint (CMP) stack method for processing of shallow and ultrashallow reflection data.udThe CRS stack is a seismic imaging method established for oil and gas exploration that is similar in concept to the conventional CMP stack method. Unlike the CMP stack,udthe CRS stack process is not confined to single CMP gathers (offset direction), but also includes neighbouring CMPs (midpoint direction) into the so-called CRS supergathers.udThe use of CRS supergathers enables stable data-driven", i.e. without human interactions, velocity analysis and residual static corrections, avoiding the poorly-automatedudand time-consuming processing steps that are instead required when implementing conventional CMP processing. This makes the seismic imaging process more compatibleudwith budgets available for near-surface geophysical investigations. Improving seismicudimaging of near-surface reflection data, while at the same time reducing processing costs and human interaction during processing was the principal objective which guidedudmy work. To investigate the advantages and limitations of exporting the CRS stack from the hydrocarbonudexploration field to the near-surface scale, I have firstly analysed and adapted the characteristics of the CRS to the requirements of near-surface reflection data. Then, I have compared the results (seismic sections and velocity fields) obtained by processingudwith the CMP and the CRS stack methods for two real field datasets (P- and SH-wave)and two synthetic datasets that exhibited very large vertical velocity changes. Finally,udI have proposed some original solutions that overcome several of the issues encountered when using CRS stack with near-surface data. The P-wave dataset was collected as part of a hydrogeological investigation with the aimudof delineating the hydrogeological framework of a paleolake environment to a depth of few hundred metres. Using the CMP method, several nearly horizontal reectors with onsets from 60 to about 250 ms were imaged. The CRS stack produced a stacked section with greater coherency and lateral continuity than the CMP section, but also spuriousudalignments of seismic energy which hinder interpretation. Weighing the CRS stacked section with the corresponding CRS coherence and number of CRS stacked traces leadsudto a considerable reduction of the spurious alignments, resulting in a seismic section more suited to delineate the aquifer and its confining units. The SH-wave ultrashallow dataset was collected to support a geotechnical study to auddepth of 10 m. The obtained CMP stacked section imaged a dipping bedrock interface below four horizontal reudectors in unconsolidated, very low velocity sediments. Theudvertical and lateral resolution was very high, so that despite the very shallow depth the resulting CMP stacked section showed the well-defined pinchout of two layers at less than 10 m depth. The CRS stack improved the continuity of the shallowest reector but showed an excessive smearing effect with some reector portions, including the pinchout,udunresolved and not as well defined as in the (very detailed) CMP counterpart. Restricting the CRS stack process to single CMP gathers, preserving the CRS-supergather for the search of stacking parameters, produced a time section very similar to the CMP counterpart. In both cases, I swiftly obtained the CRS stacked sections in a fully automatic way,udso with a cost/benefit ratio considerably more advantageous than that of the CMP sections, which required time-consuming prestack velocity analysis as well as residualudstatic corrections. Moreover, using the kinematic wave field attributes determined for each stacking operation I reconstructed velocity fields matching the ones estimated with the CMP processing, even if this required a greater amount of work than that required to produce the CRS stacked sections. Finally, using two synthetic datasets, I addressed the issue of the crossing reection events that appear in data acquired in soils characterized by strong vertical velocity gradients. Although a matter debate for decades, this is an issue still unresolved by useudof the conventional CMP method. Using the first synthetic dataset I showed that unlike in conventional CMP processing which cannot accurately process crossing reflection events without generating distortions and artefacts, the data-driven CRS stack imaging process considerably restricts their generation, limiting the reduction of signal-to-noise ratio and of temporal resolution in stacked traces. With the second synthetic dataset I simulated a data acquisition reproducing a case history with a high-velocity contrast in the first 5 m depth. The CRS results that I obtained from the modelled data demonstratedudthat the CRS stack method may be a reliable alternative for processing crossing reection events, definitely easier and faster than the construction of complicated velocityudfunctions and/or the separated processing of the crossing events. By comparing these results with those obtained using the CMP method I obtained other interestingudresults, which, however, to validate would necessitate the use of real datasets. The findings of this present study demonstrates that the CRS stack could represent audsignificant step forward for the reduction of the costs involved in shallow and ultrashallowudseismic reflection data processing, one which does not compromise the quality of results. Both these conditions being essential to the increased acceptance of the seismic reection method as a routine investigation method for use in shallow and ultrashallow seismics.
机译:本博士论文旨在评估 udCommon-Refl udection-Surface(CRS)堆栈方法是否可以被视为比常规使用的通用中点(CMP)堆栈方法更具成本效益的处理方法,用于处理浅和超浅反射数据CRS堆栈是为油气勘探建立的地震成像方法,其概念与常规CMP堆栈方法相似。与CMP堆栈不同, udCRS堆栈过程不仅限于单个CMP收集(偏移方向),还包括将相邻的CMP(中点方向)包含在所谓的CRS超级聚集器中。 ud使用CRS超级聚集器可实现稳定的 data- “驱动”,即无需人工干预,速度分析和剩余静态校正,避免了执行常规CMP处理时需要的自动化差的 udand耗时的处理步骤。这使地震成像过程与预算更兼容近地表地球物理研究:改进近地表反射数据的地震成像,同时降低处理成本和处理过程中的人为交互作用是指导工作的主要目标。研究导出CRS的优点和局限性从碳氢化合物勘探领域到近地表范围,我首先分析并适应了CRS对近地表反射数据的要求。然后,我比较了通过CMP和CRS堆栈方法处理 ud对两个真实场数据集(P波和SH波)和两个垂直速度变化非常大的合成数据集的处理结果(地震剖面和速度场) 。最后, udI提出了一些原始解决方案,这些解决方案克服了将CRS堆栈与近地表数据一起使用时遇到的一些问题。 P波数据集是水文地质调查的一部分,目的是将古湖环境的水文地质框架描绘到几百米的深度。使用CMP方法,对起始时间从60到约250 ms的几个接近水平的成像器成像。 CRS叠层产生的叠层截面比CMP断层具有更高的连贯性和横向连续性,但也产生了地震能量的虚假不对准,这妨碍了解释。用相应的CRS相干性和CRS叠置迹线的数量来称量CRS叠置段,会导致杂散对准的显着减少,从而使地震断面更适合于描绘含水层及其封闭单元。收集了SH波超浅数据集以支持岩土研究,深度达10 m。所获得的CMP堆积断面对未固结,极低速沉积物中四个水平反射器下方的浸入基岩界面成像。垂直和横向分辨率非常高,因此尽管深度很浅,但最终的CMP堆叠截面在不到10 m的深度下仍显示出清晰的两层收缩。 CRS堆栈改善了最浅的Reector的连续性,但显示出过度的拖尾效应,其中包括Repinout, udunresolved和在(非常详细的)CMP副本中定义不充分的某些Reector部分。将CRS堆栈过程限制为单个CMP收集,保留CRS超级聚集以搜索堆栈参数,产生的时间段与CMP对应的时间段非常相似。在这两种情况下,我都以全自动方式快速获得了CRS堆叠截面,因此成本/收益比要比CMP截面要优越得多,而CMP截面需要进行费时的叠前速度分析以及残余/屈服校正。此外,使用为每个堆叠操作确定的运动波场属性,我重建了与CMP处理估计的速度场相匹配的速度场,即使这需要比产生CRS堆叠部分所需的工作量更多的工作。最后,使用两个合成数据集,我解决了在以强垂直速度梯度为特征的土壤中获得的数据中出现的交叉建立事件的问题。尽管数十年来一直存在争议,但使用常规CMP方法仍无法解决这个问题。使用第一个合成数据集,我发现与传统的CMP处理不同,传统的CMP处理无法在不产生变形和伪影的情况下准确处理交叉反射事件,而数据驱动的CRS堆栈成像过程极大地限制了它们的生成,从而限制了降低堆叠轨迹中信噪比和时间分辨率的降低。使用第二个合成数据集,我模拟了一个数据采集,该数据再现了在前5 m深度具有高速对比的病历。我从建模数据中获得的CRS结果证明 uds CRS堆栈方法可能是处理交叉连接事件的可靠替代方法,绝对比构造复杂的速度函数//或交叉事件的单独处理更容易和更快。通过将这些结果与使用CMP方法获得的结果进行比较,我获得了其他有趣的结果,但是要进行验证,则必须使用实际数据集。这项研究的结果表明,CRS堆栈对于减少浅层和超浅层地震反射数据处理所涉及的成本可能代表了一个不重要的进步,而这并不影响结果的质量。这两个条件对于增加接受地震重建方法作为用于浅层和超浅层地震的常规调查方法至关重要。

著录项

  • 作者

    Battaglia Enzo;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号